ENDOMORPHISM RINGS VIA MINIMAL MORPHISMS

Manuel Cortés Izurdiaga (mizurdiaga@uma.es)

University of Málaga, Málaga (Spain)

Joint work with P. A. Guil, D. Keskin, A. Srivastava

Endomorphism rings via minimal morphisms. Mediterranean J. Math

1. PRELIMINARIES

- ullet R ring with unit.
- Mod-R: category of right modules.
- J(M) the Jacobson radical of the module M.

PROBLEM

Study the endomorphism ring of the modules belonging to certain class \mathcal{X} .

1.1. One classical idea

- ullet Take $M\in \mathcal{X}.$
- Take the injective hull u:M
 ightarrow E(M).
- Transfer properties from $End_R(E(M))$ to $End_R(M)$.

1.2. One recent application: right continuous modules

Exchange rings

For each $a \in R$, there exists $e^2 = e \in R$ with $Re \leq Ra$ and $R(1-e) \leq R(1-a)$ (Notice Ra + R(1-a) = R).

Left strongly exchange rings

For each $a_i, b_i \in R$ with $Ra_i + Rb_i = R$, there exists $e = e^2 \in R$ with $Ra_1 \ge Ra_2 \ge Ra_3 \ge \cdots \ge Re$ and $Rb_1 \ge Rb_2 \ge Rb_3 \ge \cdots \ge R(1-e)$

Endomorphism ring of continuous modules

- If E is injective, then $End_R(E)$ is left strongly exchange.
- [Cortés-Izurdiaga, Guil-Asensio] If M is continuous, then $End_R(M)$ is left strongly exchange.

1.3. One classical aplication: Quasi-injective modules

- If E is injective, $End_R(E)$ is
 - \circ Semiregular: regular modulo the Jacobson radical J with lifting idempotents.
 - *Right self-injective* modulo the Jacobson radical.
- [Faith, Utumi]. If M is quasi-injective, $End_R(M)$ enjoys these properties.

KEY RESULT: M is quasi-injective if and only if M is a fully invariant submodule of E(M).

Fully invariant submodule

$$K \leq M$$
 satisfies $f(K) \leq K$ for each $f \in End_R(M).$

1.4. Two recent extensions: automorphism invariant submodules

• [Guil-Asensio, Srivastava] If M is an automorphism-invariant submodule of E(M) then $End_R(M)$ is:

 \circ Semiregular: regular modulo the Jacobson radical J with lifting idempotents.

- [Guil-Asensio, Keskin, Srivastava] If M has a \mathcal{X} -envelope $M \to X$, M is automorphism invariant and $End_R(X)$ is semiregular, then $End_R(M)$ is
 - Semiregular.

Automorphism-invariant submodule

 $K \leq M$ satisfies $f(K) \leq K$ for each $f \in End_R(M)$ automorphism.

2. OUR WORK

If we have an inclusion $K \hookrightarrow M$, which is the relationship between $End_R(M)$ and $End_R(K)$?

2.1. Subrings of endomorphisms associated to an inclusion

Given an inclusion $u: K \hookrightarrow M$:

1. $End_R^M(K) =$ Endomorphisms of K that extend to M.



2. $End_{R}^{K}(M) =$ Endomorphisms of M which are extensions of endomorphisms of K.

$$End_{R}^{K}(M)=f ext{ with } f(K)\leq K$$

3. $\overline{End}_{R}^{K}(M) =$ Endomorphisms of M which valnsh at K.

2.2. An easy observation

There is an isomorphism

$$\Phi: End_R^M(K)
ightarrow rac{End_R^K(M)}{\overline{End}_R^K(M)}$$

defined:

- ullet Take $f\in End_R^M(K)$
- Take an extension g of f to M.
- Define $\Phi(f) = g + \overline{End}_R^K(M).$

2.3. The radicals come into the scene

- If u is left minimal, then $\overline{End}_R^K(M) \leq J(End_R^K(M))$.
- We get an epimorphism

$$\Gamma: End_R^M(K)
ightarrow rac{End_R^K(M)}{\overline{End}_R^K(M)}
ightarrow rac{End_R^K(M)}{J(End_R^K(M))}$$

with $Ker\Gamma = J(End_R^M(K)).$

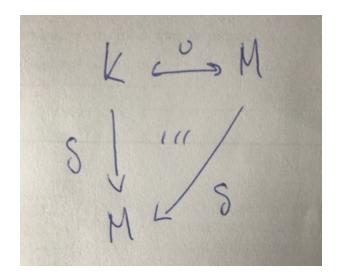
2.4. Main result

If u:K
ightarrow M is left minimal then

$$rac{End_R^M(K)}{J(End_R^M(K))}\cong rac{End_R^K(M)}{J(End_R^K(M))}$$

Left minimal morphisms

u: K
ightarrow M is left minimal if any g: M
ightarrow M such that gu = u is an isomorphism.

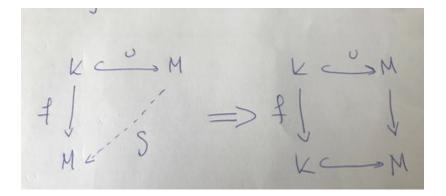


3. APPLICATIONS

3.1. Comparing with the "complete" endomorphisms rings

Let u: K o M be minimal.

1. If u is M-injective, then $End_R^M(K) = End_R(K)$.



2. If K is fully invariant, then $End_{R}^{K}(M) = End_{R}(M)$.

In this case

$$rac{End_R(K)}{J(End_R(K))}\cong rac{End_R(M)}{J(End_R(M))}$$

3.2. The case of envelopes

[Guil-Asensio, Keskin, Srivastava] If $u: K \to X$ is a monic \mathcal{X} -envelope and K is fully invariant in X, then

$$rac{End_R(K)}{J(End_R(K))}\cong \ rac{End_R(X)}{J(End_R(X))}$$

 \mathcal{X} -preenvelopes

- u:K
 ightarrow X is $\mathcal X$ -envelope if:
 - 1. $X \in \mathcal{X}$.
 - 2. u is X'-injective for each $X' \in \mathcal{X}$.
 - 3. u is left minimal.

3.3. Fully invariant submodules of X -envelopes

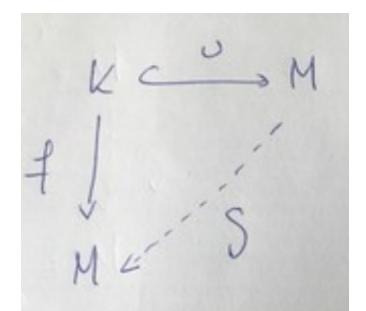
Which is the class $\mathcal{F}_{\mathcal{X}}$ consisting of modules M which are fully invariant in its \mathcal{X} -envelope?

1.
$$\mathcal{X} =$$
Injectives $\Rightarrow \mathcal{F}_{\mathcal{X}} =$ Quasi-injectives.

2. $\mathcal{X} = \mathsf{Pure-injectives} \Rightarrow \mathcal{F}_{\mathcal{X}} \subseteq \mathsf{Quasi-pure-injectives}.$

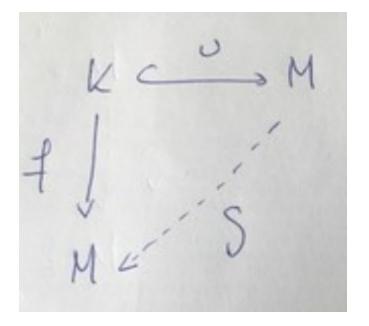
Quasi-pure-injective

M quasi-pure injective if for any pure mono u:K o M and f:K o M:



Quasi-pure-injective

M quasi-pure injective if for any **pure mono** u: K o M and f: K o M:

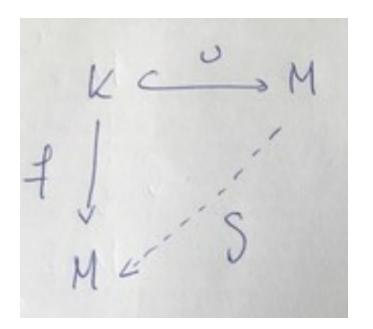


OPEN PROBLEM (FUCHS): Characterize quasi-pure injective abelian groups.

3. If $\mathcal{X} = \text{Cotorsion modules} \Rightarrow \mathcal{F}_{\mathcal{X}} \subseteq \text{Quasi-weakly-pure-injectives}$.

Quasi-weakly-pure-injective

M quasi-weakly-pure injective if for any **strongly pure mono** $u: K \to M$ and $f: K \to M$:



Strongly-pure monos \subseteq Pure monos

3.4. Cyclic ideals in commutative rings

Main result

If u:K
ightarrow M is left minimal then

$$rac{End^M_R(K)}{J(End^M_R(K))}\cong \ rac{End^K_R(M)}{J(End^K_R(M))}$$

When can we apply it to $I \leq R$.

1. If R is commutative, I is fully invariant $\Rightarrow End_R^I(R) = End_R(R) = R$. 2. If I is cyclic, $End_R^R(I) = End_R(I)$. 3. If $R/I = S_1 \oplus \cdots \oplus S_n$ with S_i non-projective and simple $\Rightarrow I \hookrightarrow R$ is minimal.

$$rac{End_R(I)}{J(End_R(I))}\cong \ rac{R}{J(R)}$$

3.5. Commutative local rings with cyclic radical

If R is a commutative local ring which is not a field and J(R) is cyclic then: $\frac{End_R(J(R))}{J(End_R(J(R)))} \cong \frac{R}{J(R)}$

4. AUTOMORPHISM INVARIANT SUBMODULES

What happens with a minimal monomorphism $u:K\to M$ with K automorphism invariant in M?

Automorphism invariant

 $f(K) \leq K$ for each automorphism f: M o M.

Main result

If u:K ightarrow M is left minimal then

$$\frac{End_{R}^{M}(K)}{J(End_{R}^{M}(K))} \cong \frac{End_{R}^{K}(M)}{J(End_{R}^{K}(M))}$$

1. If
$$u$$
 is M -injective, then $End_R^M(K) = End_R(K)$.
2. We do not have $End_R^K(M) = End_R(M)!$

4.1. Automorphism invariant submodules

If K is automorphism invariant in M:

1. Idempotents lift modulo J in $End_R(M) \Rightarrow$ so do in $End_R(K)$.

2. $End_R(M)$ semiregular and self-injective modulo the radical $\Rightarrow End_R(K)$ semiregular.

Thank you very much for your attention!